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Abstract:

The rapid adoption of electric vehicles (EVs) has been induced due to sustainable transportation and less dependence on
fossil fuels. Problems of driving range, battery degradation, and inefficient use of energy are still hurdles to large
commercial deployment. Correct SOC prediction and management will extend battery life, enhance the vehicle's
performance, and ensure proper energy distribution by regenerative conversion systems. Traditional energy management
schemes have struggled with nonlinear battery behavior and variable external driving environment sinister to SOC
inaccuracy, energy misdistribution. In this paper, a more energy-efficient EV model is set up by leveraging Al-based
prediction algorithms to maximize the energy efficiency and assess the battery performance. The proposed methodology
integrates MATLAB/Simulink modeling of the EV powertrain with advanced optimization techniques. Two algorithms
were used: a Swarm Optimization (SO) model considered as the baseline and the newly introduced Hybrid Gradient Tree
Swarm Optimization (HGTSO) model, integrating global search with gradient-based local refinement. Simulation results
show swarm-based SOC estimation exhibits a mean error of 0.9606, while the HGTSO reduces it drastically to 0.6605,
thereby more closely matching the real SOC values. This improvement confirms the robustness of HGTSO on nonlinearity
and variable driving profiles with efficient regenerative braking, improved battery life, and energy management. The results
bring a dismissive confirmation of Al-driven optimization frameworks such as HGTSO, which could take a transformative
role in predictive SOC estimation; therefore, it is an intelligent, sustainable, and energy-efficient operation of EVs.

Keywords: Model Predictive Control, Deep Reinforcement Learning, Eco-Driving, Battery Electric Vehicles, Energy
Management, Sustainable.

1. INTRODUCTION

The global focus on sustainable mobility and greenhouse gas reduction has given impetus to the electric vehicle- hybrid
electric vehicle (EV-HEV) industry. EVs, unlike any conventional internal combustion engine (ICE) vehicle, produce zero
emissions at the tailpipe, operate silently, and can be charged using renewable energy. Concerns affecting the abrupt mass
addition of EVs include driving range, battery degradation, and the existence of energy management strategies [1]. The
battery, however, holds paramount importance, as it controls not only driving range but also the entire vehicle performance
and life span. Hence, defining the battery State of Charge (SOC) is of prime importance, while efficient control over it will
help provide energy efficiency to the vehicle, lower operation costs, and increase the vehicle lifespan [2]. Hybrid- and
plug-in hybrid-powered central-power systems and fuel cell and battery electric are alternative powertrain technologies.
This also supports their capability to diminish the fossil-fuel dependence and minimize pollution. In this sense, higher fuel
efficiency results from using wisely power and renewable energy sources for a better purpose [1]-[2]. These technics can
encourage regenerative energy recovery and may lower operating costs that will be a cleaner, smarter, and sustainable way
for the auto industry to battle higher environmental and energy problems.This SOC represents the battery capacity available
to the battery concerning its maximum, and its exact forecasting is central to avoiding overcharge and deep discharge, both
of which promote the wear of the battery. Ineffective SOC estimimation can waste energy, diminish recovery by
regenerative braking, and give rise to an expensive maintenance bill. Conventional SOC estimation methods often take
into consideration prespecified driving cycles or simplified models that cannot evolve with actual road and traffic
conditions [3]. This usually leaves them unsuitable to grasp the nonlinear and dynamic behavior of batteries under various
driving profiles. To tackle such a problem, the efforts being put in recent times are more oriented toward Al and modern
optimization algorithms, which can model complex system behavior and can adjust to unpredictable environments [4].

Recent research shows the power of Al-driven algorithms for SOC prediction and other energy-management issues. With

data-driven learning and optimization techniques, Al models can consider and integrate various influencing factors such
as driving conditions and traffic dynamics, battery aging, and power demand, among others. In this sense, these models
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increase prediction accuracy; optimally control regenerative braking; and semantic energy distribution throughout vehicle
subsystems [5]. For example, Particle Swarm Optimization (PSO) has been used for SOC prediction because of its global
searching capability and minimizing the errors in predictions [6]. Nonetheless, PSO cannot easily avoid local optima in
changing environments, thus limiting its capacity to be more accurate in real-world SOC prediction.

Hybridization approaches aim to solve this kind of problem by amalgamating the characteristics of certain well-known
algorithms. The first of such hybrids is the Hybrid Gradient Tree Swarm Optimization (HGTSO), which combines the
global exploration capabilities possessed by swarm optimization and the local search ability of gradient tree models [7].
These plants less reduction into prediction errors while better grasping nonlinear variation patterns in battery behaviors.
Real-time driving data and response patterns are two factors put in under the HGTSO scheme to increase robustness and
reliability during SOC estimation, making it a perfect option for smart EV energy management systems [8].

1. RELATED WORK

Eco-driving methods for electric and hybrid vehicles have been maturely analyzed in their phases of predictive control,
MPC, and DRL. Cao et al. [1] presented an electric-vehicle-level predictive cruise control system based on tri-level MPC
with an ANN to describe instantaneous energy consumption. This approach of MPC was shown with considerable energy
savings under free-driving, car-following, and signal-anticipance scenarios, but the validation was only through simulation
assuming 100% accurate SPaT and V2I data. Further, the authors proposed an LMPC and hybrid MPC-DRL framework,
where the MPC solved short-horizon optimizations while DRL learned long-term energy-efficient driving strategies. A
system of these achieved energy savings in repeated routes but needed previous data for convergence, thereby rendering
generalizability towards new traffic conditions obsolete [2].

From an efficiency perspective, the Koopman operator has underpinned many research avenues in MPC: nonlinear vehicle
dynamics may have been approximated as linear predictors to enable real-time quadratic programming. While really
working in a closed-loop simulation environment, questions to how far such approaches may be robust outside training
domains still remain [3]. Comparative studies for choosing the ever-optimal predictive cruise control with dynamic
programming, SQPs, and discrete schemes balanced between optimality and computational costs but left the realization of
some real-time decision unknown [4]. Neural network and fuzzy adaptation self-learning schemes for driving-cycle
identification were proposed to adjust the MPC weights dynamically, which was shown to improve energy economy but
with limited robustness toward unforeseen cycles. On the other hand, robust MPC, which linearized the dynamics and dealt
with bounded mismatches, emerged and was able to run almost in real time but was usually conservative in simple energy-
saving performance [6]. Under the theory of pulse-and-glide adaptive cruise control, genetic and PSO optimizations were
embedded to achieve energy reductions; conversely, their actual efficiency depended so much on traffic situations [7].
Hybrid MPC methods integrated with metaheuristic solvers, such as Grey Wolf Optimizer, cut down computation time at
the expense of struggling with constraint satisfaction and safety guarantees [8].

Adaptive MPC methods have posed formulations in which trade-offs between tracking performance and energy
consumption were made, validated through simulations and limited experiments. Communication latency and measurement
noise, however, were insufficiently studied [9]. Synthesized comparative reviews distilled the following three very broad
areas of MPC research into eco-driving: dependence on true look-ahead information (V2X, SPaT, or maps), and on
computationally efficient formulations (Koopman, linearized approximations, bi-level MPC), and on robustness and
uncertainty, recognizing the absence of large-scale on-road validation [10]. DRL-based methods ran parallel o the MPC.
Hierarchical DRL methods were improved for velocity profile optimization to mitigate energy consumption at intersections
given SPaT and traffic data but remain sensitive to noise inputs [11]. Multi-objective DRL schemes merged safety models
with reward shaping toward trading off efficiency, comfort, and safety, although the tuning remains case-specific [12].
Advanced DRL methods such as PPO and SAC were experimented with to generalize over intersections but are plagued
with controversies of sample inefficiency and simulation-dependence [13].

Applications of DRL have been extended into hierarchies for hybrid trucks, with high-level route planning coupled with
low-level power distribution [14], and for reward-shaping frameworks as well as battery-fuel trade-offs and emissions
management [15]. Queue-aware DRL policies at intersections were promising but inaccurate in their predictions [16].
Multi-agent DRL approaches in mixed traffic improved platoon efficiency but lacked scalability and fairness [17]. Safe
DRL integrated safety filters to block red-light violations but quickly became so conservative as to be almost useless [18].
Recent works involved transfer learning to achieve generalization across cities [19], hybrid DRL-MPC models at
intersections [20], DRL for low-level control of CAV [21], and autonomous eco-driving in mixed traffic using benchmark
datasets lacking real-world variability [22]. The other contributions included multi-objective DRL for urban eco-driving
[23], hierarchical DRL for heavy vehicles [24], and further development of benchmarks and simulation environments that,
though enabling systematic evaluation, still lacked common metrics and reproducibility [25].

Table 1: Model Predictive Control (MPC) for Energy-Efficient Eco-Driving
| Ref | Method / Approach | Key Contributions | Results/Findings | Limitations
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[1] | Real-time, bi-level Combines car-following, | Urban simulation Simulation-based only; relies on
Predictive Cruise SPaT, and free-driving shows notable accurate SPaT/V2l and preceding
Control (PCC) with tri- | for energy-optimal energy savings vehicle data; no large-scale on-
level MPC + ANN acceleration across scenarios road tests
energy model

[2] | Learning MPC Short-horizon MPC with | Simulated energy Needs prior data/repeated route
(LMPC) + hybrid MPC | learning improves long- | use reduced exposure; limited generalization
+ DRL term energy economy compared to to new routes/traffic patterns

baseline over
repeated routes

[3] | Koopman operator- Data-driven linear Closed-loop Accuracy may degrade outside
based MPC predictors approximate simulation shows training envelope; robustness to

nonlinear dynamics; improved runtime unseen maneuvers not fully
efficient QP for real-time | vs. fully nonlinear studied
implementation NMPC

[4] | Predictive Cruise Analyzed optimality vs. | Identified trade-offs | Comparative results mostly
Control (PCC) with computational cost between simulation/computation; real-time
DP, SQP, across solution methods | computational effort | constraints (CPU, V2X data) not
discretization and solution fully resolved

optimality

[5]1 | MPC + driving-cycle Dynamically adapts Co-simulation Requires training/tuning of
identification (NN + MPC weights for shows improved identification layer; robustness to
fuzzy) different driving cycles fuel/energy unseen cycles and sensor noise

economy across not fully demonstrated
multiple cycles

[6] | Robust MPC (RMPC) | Linearized speed Improved robustness | Limited hardware-in-the-loop/on-
for ecological adaptive | dynamics; handled and near-real-time road validation; conservatism vs.
cruise control bounded model performance on nominal MPC may reduce energy

mismatch driving cycles savings

[7]1 | Pulse-and-Glide (PnG) | Embeds PnG within Simulation shows PnG sensitive to lead vehicle
integrated ACC ACC and optimizes substantial energy behavior; issues with passenger
optimized via parameters reduction with comfort and safety in dense
genetic/PSO regenerative braking | flows; simulation-focused

[8] | MPC + Grey Wolf Reduced computation Energy gains Metaheuristic brittle, parameter-
Optimizer time; improved local observed vs. simple | sensitive, weak guarantees on
(metaheuristic) optima avoidance controllers constraint satisfaction and safety

[9] | MPC-based adaptive Explicitly trades off Simulation and Limited experimental coverage;

control (space-domain)

tracking accuracy and
energy consumption
with efficient solvers

limited experiments
show improved
trade-offs

communication latency and
measurement outliers not fully
addressed

I11. RESEARCH OBJECTIVES

To predict and evaluate the variation in maximum energy consumption of battery parameters and to optimizing energy
efficiency by using regenerative system.
To design energy efficient EV model by using Artificial Intelligence based prediction algorithm to study for the
vehicle performance and life.
Evaluating the effectiveness of the proposed algorithm by drawing comparative analysis of the errors in the output

with respect to actual data

1IV. PROPOSED METHODOLOGY

a.

Prediction models for SOC

Considering the types of constraints imposed on the system, the goal of optimization-based (OB) EMS is to find the optimal
control sequence (e.g. reference power demand) that minimizes a cost function while satisfying the dynamic state
constraints such as the global state constraints (e.g. battery SoC) and the local state constraints (e.g. power limit, speed
limit, and torque limit).
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Figure 1: General Flowchart of Bio-inspired Optimization Algorithms
HEV Parameter Optimization belongs to the domains of multidisciplinary investigation that combine the design of
powertrain consisting of energy management and control system engineering. In an HEV, the main objectives will be to
minimize fuel consumption and emissions when optimally sizing the internal combustion engine (ICE), electric motor
(EM), and energy storage system (ESS) along with fine-tuning of control strategy (CS) parameters. Meanwhile, vehicle-
level performance requirements such as acceleration, grade-ability, drivability, and battery state-of-charge control should
also be met. Hence, design of HEV can be defined as a multi-objective optimization problem where the objectives, decision
variables, and performance constraints are mathematically represented as shown with Equation numbers below.
b. Objectives: Minimize

F1(X) = {fuel economy}
F2(X) = {emissions}

Design Variables: X= {ICE size, EM size, ESS size, control strategy parameters}

Using state-space modeling for batteries means representing the system dynamics by the battery model, wherein the state
of charge is considered one of the primary state variables. The estimation of SOC is carried out within the filter or observer
framework. Basically, it is to obtain the relationship between these quantities that are measured, i.e., current, terminal
voltage, temperature, and SOC. These variables of measurements enter the state-space model to give predicted terminal
voltage. The error between the actual measured terminal voltage and the predicted one enters a feedback loop after gain
adjustment. Thus, corrections are introduced such that the estimated state variables ultimately converge to the real ones,
giving an accurate SOC value through the observer or filter.

Currently, researchers are focusing on three chief areas of consideration in SOC estimation based on state-space models:
(i) developing equivalent circuit models that reflect with due accuracy battery electrochemical dynamics, (ii) finding
parameter identification methods to enable model calibration with utmost precision, and (iii) designing robust
observers/filters for SOC estimation purposes. Since the accurate identification of parameters that directly relate between
the equivalent circuit model and SOC prediction is the base assurance for prediction accuracy, the balance between
modeling accuracy and simplicity of structure remains an impromptu area of research. Advanced characterizations that
consider thermal effects, changing load conditions, and aging features are now looked into for making SOC estimation
robust from an application standpoint in a real-world HEV scenario.

The training process is carried out by defining the initial SOC curve as the output, while current and voltage measurements
are used as input variables. Optimization techniques are employed to tune the coefficients of the proposed models, with
the objective of minimizing the absolute error between the measured SOC and the model-predicted response. The ultimate
goal of this training procedure is to determine a set of coefficients that accurately characterize the behavior of the battery
pack, effectively approximating the initial capacity curve and enabling reliable SOC estimation across operating conditions.
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In this framework, the problem of optimization is set up as a minimization problem of an objective function. This objective
function represents the discrepancy between the actual SOC data and the model's output. Each objective function can be
described in terms of a feature set, B, which uniquely defines its structural and behavioral characteristics. In turn, an
algorithm instance under optimization is defined through its control parameters, p. The principal task is to classify objective
functions with respect to their feature set, and consequently to predict a set of control parameters thereby maximizing the
performance of the algorithms. If such a mapping is established, one is able to automatically select or adapt optimization
strategies that are well-fitted to continuous battery objective functions, thereby enhancing both model accuracy and speed
of computation.

The model process allows one to assume battery pack operation by an equivalent circuit made of merely two states: S1
represents the internal battery impedance |Zint| [Q2], whereas 82 corresponds to the SOC. This model has be deployed for
prediction using the swarm and DE prediction algorithms. Equations (4.13) and (4.14) detail the state-space process model:

Bi(n+ 1) = 1 (n) + wi(n) @)
B(n+1)=p,(n)— [vL + (vy — vy). B0 4 gy (B,() — 1) + (1 — a).v,. (e‘ﬁ —e B JB,(n+ 1)) —
I(n). B, (n)]-ﬁ1 (n).At. EL + wy(n) )

Regarding the state-space measurement model (i.e., the system output), this is related to the voltage signal v,,.

In this context, i(k) refers to the discharging current in amperes [A] and At refers to the sampling interval in seconds [s] of
the model inputs. These parameters Vo, VL, a, and y characterize the nonlinear behavior of the battery voltage response
under open-circuit conditions. The E(crrr) represents total extractable energy capacity of the battery pack, whereas ®: and
2 depict process noise components related with model uncertainties and external disturbances. To analyze implementation
robustness and prepare for more reliable prediction in adventure mode-shift strategies, the simulation is executed under a
dynamically varying current profile of EV operation scenarios. These dynamic current profiles mimic realistic driving
schedules, providing a more precise evaluation of the battery behavior and control strategy performance.

c. Swarm Algorithm Implementation and process Description

Particle Swarm Optimization (PSO) is a random search technique with a population-oriented procedure, drawing
inspiration from different swarms in nature, such as flocking of birds or schooling of fish. The primary guiding principle
is that an array of candidate solutions called particles, initially dispersed at random positions in the solution space, is
evaluated with respect to the objective function at each respective position to obtain the particle's fitness. However, PSO
is generally characterized by requiring fewer parameters to adjust, lesser computational effort to carry out, and better
convergence properties, which make it attractive to numerous fields. Thus, PSO has been applied to areas such as vehicle
design, energy management systems, and control strategies for hybrid and electric vehicles.

In PSO, every particle represents a potential solution and is therefore given a position and velocity in the search space. The
particles iteratively move in solution space with some velocity that gets constantly updated on the bases of personal and
global experiences. Each particle remembers its personal best position in the solution space, namely pbest, while the gbest
is the position of the best solution ever found by any particle among the entire swarm. The particle velocities are constantly
tuned during every iteration to strike a balance between exploring the search space and exploiting the information
concerning the best solutions, and thus directing the swarm to better solutions. The algorithm continues to proceed in this
manner until convergence of the swarm occurs or until it satisfies a terminating condition such as reaching a maximum
number of iterations or acceptable error.

Step 1: Initialize the particles

Initialize the position array with random numbers having uniform distribution

X = Urand (rlowerlim,rupperlim) (3)
Assign this initial positon to best known position array.

P=X 4
Initialize particle Velocity

V=X 5)

If the number of particles are Num, then, X is a Num, size array of particle position, similarly P is a Num, size array of
pbest positions and V is a Numj size array particle velocities.
Step 2: Evaluate the optimization fitness function
E, = F(X) and E, = F(P) and e, = f(gbest) (6)
Where E, and E,, are the fitness evaluation array for X and P correspondingly. e is the function evaluation at gbest
Step 3: Update pbest value for each particle of the population
if E,(i) < E,(i) then P(i) = X(i) (7)
Step 4: Update gbest value for the entire population —
if Ey(i) < ey then gbest = P(i) (8)
Step 5: Update the velocity and position of the particles
V(@) = wV (@) + c11tpgna (0, (P(E) = X(©)) + Cattrana (0,1)(gbest — X(D)) ©)
X@O=X@O+V@H (10)
Where w is the inertial weight, ¢, is the cognitive parameter and c, is the social parameter.
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Figure 2: PSO- controller Technique implemented in MATLAB/SIMULINK

The general flow of the PSO-based State of Charge (SOC) estimation approach is illustrated in Figure 2. The algorithm
uses the measured battery voltage and current as inputs to Particle Swarm Optimization, wherein the PSO adjusts the
internal model state to minimize the error between the measured terminal voltage and the voltage predicted by the battery
model for the same current profile. While the full electrochemical battery model contains several dynamic states, from a
computational standpoint, only the lithium-ion concentration in the electrode, Cs(x, r, t), is considered as the optimization
variable.
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If one sees it, Cs is basically a representation of stored charge inside the electrodes and so it is closely associated with SOC
and almost directly with the open-circuit voltage. By taking Cs as a particle position in the PSO algorithm, the estimation
problem is converted into an optimization process where each particle stands for a potential SOC value. These particles are
randomly initialized within a bounded range around the value of Cs previously estimated, and while doing so, the swarm
iteratively adjusts their position and attempts to minimize the voltage prediction error. While it is usual for PSO to randomly
choose the initial position of particles, better convergence may be achieved if the initial position is chosen close to the best-
known SOC estimate that mirrors the presently operating condition of the battery.

The offline estimation of the measurement model parameters defined previously considers a slightly modified version of
the model detailed in Eq. (11).

V*(S0C,1,0) = 0, + (8, — 6,).€%5%¢D + 0,.0,.(SOC — 1) + (1 — 85).6,. (e79+V50¢+1) — [ g, (11)
where the SOC and the current I are data vectors. The parameters vector 0 is just the set of parameters to be estimated. It
is worth mentioning that the SOC data vector can be computed from the voltage and current data vectors measured through
a real-driving test experiment.

V. RESULT AND DISCUSSION

SOC estimation helps provide the needed information on driving profiles, battery behavior, and vehicle efficiency for real-
time energy management of individual electric or hybrid vehicles, and also informs the design of batteries, improvements
in EV technology, and planning of EV infrastructure. Making an exact prediction of the SOC could lead to improving
vehicle efficiency, extending battery life, and providing an experience wherein driving remains smooth and comfortable.
From a fleet operator's perspective, reliable SOC forecasts allow for route optimization, facilitate dynamic dispatching, and
minimize charging downtime, thereby maximizing productivity and reducing operational costs. The prediction accuracy is
assessed using certain indicators such as the RMSE, where the lower the value, the better is the alignment between the
predicted and actual SOC, thereby leading to better energy management and vehicle performance. In this research, the
Hybrid Gradient Tree Swarm Optimization (HGTSO) algorithm will be used, which is a mixture between the global search
mechanism of swarm optimization and gradient-driven decision trees to minimize the errors under dynamic driving pattern.
It uses Al-based pattern recognition and adaptive modeling to enable more robust and real-time SOC prediction, thereby
fostering intelligent HEV energy management beyond the scope of existing conventional optimization methods.

! A 1§ N
/ l\‘ | / \I

/

Figure 3: Vehicle speed reference Figure 4: Motd'r running rpm

Acceleration in the HEV occurs during the so-called reference speed profile around 20 seconds, followed by non-uniform
speed variations until 25 seconds. The deceleration process starts just about 115 s and ends with an idle period of operation.
These nonlinear speed alterations are captured by the reference speed signal given to the simulation process from 10 s
onward, as illustrated in Figure 3. Accordingly, this change in speed directly affects motor torque and power performance,
resulting in varying torque response from the HEV by means of a drivetrain dynamic under each driving condition shown
in figure 4.

[
| | |
|
| | | |
‘_ B \ |
Figure 5: Generator Speed Response under the provided Figure 6: For driving condition the engine speed
running condition in Hybrid Electric Vehicle response
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Figure 5.3 illustrates how the generator used to behave in terms of RPM under the given running conditions, while Figure

5.4 depicts the influence of vehicle speed on the dynamics coupled between drivetrain and power generation system. Non-
uniform behavior of generator speed occurs because of dynamic loads and transitional behavior. Engine speed changes

with a change in power demand, staying low under light loads and rising with acceleration or higher speeds for efficient
HEV operation.

Figure 7: The variation in baﬁery state of charge % as per

Figure 8: DC bus voltage in the controller of the
the driving condition

modelled EV
In Figure 7, it is shown that when motor RPM is zero, the battery SOC % remains constant, indicating no net charge or
discharge while the SOC varies with changes in vehicle speed and power demand. Left in Figure 8 is the representation of
DC bus voltage fluctuations during the simulation, setting up for a view of the effect of control algorithms on the EV model
under particular driving conditions. These figures, aside, should make clear at a glance the effects of motor-based operation,
battery behavior, and system control on real-time HEV performance.

“~. / ".‘
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Figure 9: The battEIy VOItage in the EV for the prOVided

Figure 10: Comparison of the battery SOC % and
non uniform driving condition predicted SOC in the driving condition using prediction
model 1

Figure 9 shows the battery bus voltage profile for non-uniform driving conditions, with large voltage exhibiting from
driving irregularities. Figure 10 displays a comparison between actual SOC (blue) and SOC predicted by the Swarm
Optimization method (red), having an error of 0.9606. These two figures emphasize the effects that driving variability has
upon battery behavior arc1d SOC estimation.
———rr pansnnGFBa.tteryfcrx_:%

\ ‘.‘--' ," }/7/\4/

T \ : ' it
| ) gt AR

¥ | NS L
\ ‘| My

| | I

| A A\ '

|

|

‘ \ AN
| | ‘
4

Comparisan OF Battery SOC %

Figure 11: Comparison of the battery SOC % and Figure 12: Comparison of the battery SOC % and
predicted SOC in the driving condition using prediction
model 2

predicted SOC in the driving condition using two
different prediction models

During varying driving conditions, the actual battery SOC% shown in Figure 11 (Blue) stood alongside the HGTSO-
predicted SOC% (Red). The respective prediction error attained its value at 0.6605. The comparison of the SOC% predicted

via the swarm-based method (Red, with an error of 0.9606) with the proposed HGTSO one (Yellow, with an error of
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0.6605) against the actual SOC% (Blue) is given in Figure 12. The HGTSO is reflected as providing higher accuracy closer
to the actual SOC. These figures highlight the supremacy of HGTSO for reliable SOC estimation in HEVs under dynamic
driving conditions.

Table 2 Comparative Table of Prediction Errors by two Algorithms

S No. Prediction Models Prediction Error
1 Swarm Based 0.9606
Prediction
2 HGTSO 0.6605

Table 2 infers that the HGTSO model yields an error of prediction of 0.6605. This means that, on average, the prediction
deviates by approximately 0.6605 units from the actual SOC values. The smaller the error in prediction, the better the
prediction made, and therefore the model should reflect the observed values more closely. On the other side, the swarm-
based prediction model and the HGTSO model serve as two approaches to SOC estimation with error values that give the
quantitative base for accuracy as summarized in Table 5.1.

VI. CONCLUSION AND FUTURE WORK

In this work, the design and simulation of HEV with MATLAB and accurate battery SOC prediction were carried out to
boost HEV output and energy management. MATLAB accurately models powertrain components such as internal
combustion engine, electric motor, and battery, thereby balancing fuel efficiency, emission reduction, and system
performance under varying conditions. SOC prediction is carried out through advanced algorithmic methods that consider
battery characteristics, driving profiles, and power demands, created for maximizing battery utilization, driving range
extension, and battery lifetime. The studies reveal that although Swarm Optimization produces SOC with a mean error of
0.9606, the proposed Hybrid Gradient Tree Swarm Optimization--HGTSO--diminishes the error to 0.6605, proving better
in prediction which is the main requirement for real-time energy management. Future research explores how adaptive
machine learning, deep learning, and reinforcement learning techniques can use the massive scale of EV data, especially
with context-aware inputs such as temperature, traffic, and driver behavior, to improve SOC prediction further and a more
intelligent and adaptive energy management scheme for hybrid and electric vehicles.
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