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Abstract:  

The rapid adoption of electric vehicles (EVs) has been induced due to sustainable transportation and less dependence on 

fossil fuels. Problems of driving range, battery degradation, and inefficient use of energy are still hurdles to large 

commercial deployment. Correct SOC prediction and management will extend battery life, enhance the vehicle's 

performance, and ensure proper energy distribution by regenerative conversion systems. Traditional energy management 

schemes have struggled with nonlinear battery behavior and variable external driving environment sinister to SOC 

inaccuracy, energy misdistribution. In this paper, a more energy-efficient EV model is set up by leveraging AI-based 

prediction algorithms to maximize the energy efficiency and assess the battery performance. The proposed methodology 

integrates MATLAB/Simulink modeling of the EV powertrain with advanced optimization techniques. Two algorithms 

were used: a Swarm Optimization (SO) model considered as the baseline and the newly introduced Hybrid Gradient Tree 

Swarm Optimization (HGTSO) model, integrating global search with gradient-based local refinement. Simulation results 

show swarm-based SOC estimation exhibits a mean error of 0.9606, while the HGTSO reduces it drastically to 0.6605, 

thereby more closely matching the real SOC values. This improvement confirms the robustness of HGTSO on nonlinearity 

and variable driving profiles with efficient regenerative braking, improved battery life, and energy management. The results 

bring a dismissive confirmation of AI-driven optimization frameworks such as HGTSO, which could take a transformative 

role in predictive SOC estimation; therefore, it is an intelligent, sustainable, and energy-efficient operation of EVs. 

Keywords: Model Predictive Control, Deep Reinforcement Learning, Eco-Driving, Battery Electric Vehicles, Energy 

Management, Sustainable.

 

I. INTRODUCTION 

The global focus on sustainable mobility and greenhouse gas reduction has given impetus to the electric vehicle- hybrid 

electric vehicle (EV-HEV) industry. EVs, unlike any conventional internal combustion engine (ICE) vehicle, produce zero 

emissions at the tailpipe, operate silently, and can be charged using renewable energy. Concerns affecting the abrupt mass 

addition of EVs include driving range, battery degradation, and the existence of energy management strategies [1]. The 

battery, however, holds paramount importance, as it controls not only driving range but also the entire vehicle performance 

and life span. Hence, defining the battery State of Charge (SOC) is of prime importance, while efficient control over it will 

help provide energy efficiency to the vehicle, lower operation costs, and increase the vehicle lifespan [2]. Hybrid- and 

plug-in hybrid-powered central-power systems and fuel cell and battery electric are alternative powertrain technologies. 

This also supports their capability to diminish the fossil-fuel dependence and minimize pollution. In this sense, higher fuel 

efficiency results from using wisely power and renewable energy sources for a better purpose [1]-[2]. These technics can 

encourage regenerative energy recovery and may lower operating costs that will be a cleaner, smarter, and sustainable way 

for the auto industry to battle higher environmental and energy problems.This SOC represents the battery capacity available 

to the battery concerning its maximum, and its exact forecasting is central to avoiding overcharge and deep discharge, both 

of which promote the wear of the battery. Ineffective SOC estimimation can waste energy, diminish recovery by 

regenerative braking, and give rise to an expensive maintenance bill. Conventional SOC estimation methods often take 

into consideration prespecified driving cycles or simplified models that cannot evolve with actual road and traffic 

conditions [3]. This usually leaves them unsuitable to grasp the nonlinear and dynamic behavior of batteries under various 

driving profiles. To tackle such a problem, the efforts being put in recent times are more oriented toward AI and modern 

optimization algorithms, which can model complex system behavior and can adjust to unpredictable environments [4]. 

 

Recent research shows the power of AI-driven algorithms for SOC prediction and other energy-management issues. With 

data-driven learning and optimization techniques, AI models can consider and integrate various influencing factors such 

as driving conditions and traffic dynamics, battery aging, and power demand, among others. In this sense, these models 
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increase prediction accuracy; optimally control regenerative braking; and semantic energy distribution throughout vehicle 

subsystems [5]. For example, Particle Swarm Optimization (PSO) has been used for SOC prediction because of its global 

searching capability and minimizing the errors in predictions [6]. Nonetheless, PSO cannot easily avoid local optima in 

changing environments, thus limiting its capacity to be more accurate in real-world SOC prediction. 

 

Hybridization approaches aim to solve this kind of problem by amalgamating the characteristics of certain well-known 

algorithms. The first of such hybrids is the Hybrid Gradient Tree Swarm Optimization (HGTSO), which combines the 

global exploration capabilities possessed by swarm optimization and the local search ability of gradient tree models [7]. 

These plants less reduction into prediction errors while better grasping nonlinear variation patterns in battery behaviors. 

Real-time driving data and response patterns are two factors put in under the HGTSO scheme to increase robustness and 

reliability during SOC estimation, making it a perfect option for smart EV energy management systems [8]. 

II. RELATED WORK 

Eco-driving methods for electric and hybrid vehicles have been maturely analyzed in their phases of predictive control, 

MPC, and DRL. Cao et al. [1] presented an electric-vehicle-level predictive cruise control system based on tri-level MPC 

with an ANN to describe instantaneous energy consumption. This approach of MPC was shown with considerable energy 

savings under free-driving, car-following, and signal-anticipance scenarios, but the validation was only through simulation 

assuming 100% accurate SPaT and V2I data.  Further, the authors proposed an LMPC and hybrid MPC–DRL framework, 

where the MPC solved short-horizon optimizations while DRL learned long-term energy-efficient driving strategies. A 

system of these achieved energy savings in repeated routes but needed previous data for convergence, thereby rendering 

generalizability towards new traffic conditions obsolete [2]. 

 

From an efficiency perspective, the Koopman operator has underpinned many research avenues in MPC: nonlinear vehicle 

dynamics may have been approximated as linear predictors to enable real-time quadratic programming. While really 

working in a closed-loop simulation environment, questions to how far such approaches may be robust outside training 

domains still remain [3]. Comparative studies for choosing the ever-optimal predictive cruise control with dynamic 

programming, SQPs, and discrete schemes balanced between optimality and computational costs but left the realization of 

some real-time decision unknown [4]. Neural network and fuzzy adaptation self-learning schemes for driving-cycle 

identification were proposed to adjust the MPC weights dynamically, which was shown to improve energy economy but 

with limited robustness toward unforeseen cycles. On the other hand, robust MPC, which linearized the dynamics and dealt 

with bounded mismatches, emerged and was able to run almost in real time but was usually conservative in simple energy-

saving performance [6]. Under the theory of pulse-and-glide adaptive cruise control, genetic and PSO optimizations were 

embedded to achieve energy reductions; conversely, their actual efficiency depended so much on traffic situations [7]. 

Hybrid MPC methods integrated with metaheuristic solvers, such as Grey Wolf Optimizer, cut down computation time at 

the expense of struggling with constraint satisfaction and safety guarantees [8]. 

 

Adaptive MPC methods have posed formulations in which trade-offs between tracking performance and energy 

consumption were made, validated through simulations and limited experiments. Communication latency and measurement 

noise, however, were insufficiently studied [9]. Synthesized comparative reviews distilled the following three very broad 

areas of MPC research into eco-driving: dependence on true look-ahead information (V2X, SPaT, or maps), and on 

computationally efficient formulations (Koopman, linearized approximations, bi-level MPC), and on robustness and 

uncertainty, recognizing the absence of large-scale on-road validation [10]. DRL-based methods ran parallel o the MPC. 

Hierarchical DRL methods were improved for velocity profile optimization to mitigate energy consumption at intersections 

given SPaT and traffic data but remain sensitive to noise inputs [11]. Multi-objective DRL schemes merged safety models 

with reward shaping toward trading off efficiency, comfort, and safety, although the tuning remains case-specific [12]. 

Advanced DRL methods such as PPO and SAC were experimented with to generalize over intersections but are plagued 

with controversies of sample inefficiency and simulation-dependence [13]. 

 

Applications of DRL have been extended into hierarchies for hybrid trucks, with high-level route planning coupled with 

low-level power distribution [14], and for reward-shaping frameworks as well as battery-fuel trade-offs and emissions 

management [15]. Queue-aware DRL policies at intersections were promising but inaccurate in their predictions [16]. 

Multi-agent DRL approaches in mixed traffic improved platoon efficiency but lacked scalability and fairness [17]. Safe 

DRL integrated safety filters to block red-light violations but quickly became so conservative as to be almost useless [18]. 

Recent works involved transfer learning to achieve generalization across cities [19], hybrid DRL–MPC models at 

intersections [20], DRL for low-level control of CAV [21], and autonomous eco-driving in mixed traffic using benchmark 

datasets lacking real-world variability [22]. The other contributions included multi-objective DRL for urban eco-driving 

[23], hierarchical DRL for heavy vehicles [24], and further development of benchmarks and simulation environments that, 

though enabling systematic evaluation, still lacked common metrics and reproducibility [25]. 

 

Table 1: Model Predictive Control (MPC) for Energy-Efficient Eco-Driving 
Ref Method / Approach Key Contributions Results / Findings Limitations 
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[1] Real-time, bi-level 

Predictive Cruise 

Control (PCC) with tri-

level MPC + ANN 

energy model 

Combines car-following, 

SPaT, and free-driving 

for energy-optimal 

acceleration 

Urban simulation 

shows notable 

energy savings 

across scenarios 

Simulation-based only; relies on 

accurate SPaT/V2I and preceding 

vehicle data; no large-scale on-

road tests 

[2] Learning MPC 

(LMPC) + hybrid MPC 

+ DRL 

Short-horizon MPC with 

learning improves long-

term energy economy 

Simulated energy 

use reduced 

compared to 

baseline over 

repeated routes 

Needs prior data/repeated route 

exposure; limited generalization 

to new routes/traffic patterns 

[3] Koopman operator-

based MPC 

Data-driven linear 

predictors approximate 

nonlinear dynamics; 

efficient QP for real-time 

implementation 

Closed-loop 

simulation shows 

improved runtime 

vs. fully nonlinear 

NMPC 

Accuracy may degrade outside 

training envelope; robustness to 

unseen maneuvers not fully 

studied 

[4] Predictive Cruise 

Control (PCC) with 

DP, SQP, 

discretization 

Analyzed optimality vs. 

computational cost 

across solution methods 

Identified trade-offs 

between 

computational effort 

and solution 

optimality 

Comparative results mostly 

simulation/computation; real-time 

constraints (CPU, V2X data) not 

fully resolved 

[5] MPC + driving-cycle 

identification (NN + 

fuzzy) 

Dynamically adapts 

MPC weights for 

different driving cycles 

Co-simulation 

shows improved 

fuel/energy 

economy across 

multiple cycles 

Requires training/tuning of 

identification layer; robustness to 

unseen cycles and sensor noise 

not fully demonstrated 

[6] Robust MPC (RMPC) 

for ecological adaptive 

cruise control 

Linearized speed 

dynamics; handled 

bounded model 

mismatch 

Improved robustness 

and near-real-time 

performance on 

driving cycles 

Limited hardware-in-the-loop/on-

road validation; conservatism vs. 

nominal MPC may reduce energy 

savings 

[7] Pulse-and-Glide (PnG) 

integrated ACC 

optimized via 

genetic/PSO 

Embeds PnG within 

ACC and optimizes 

parameters 

Simulation shows 

substantial energy 

reduction with 

regenerative braking 

PnG sensitive to lead vehicle 

behavior; issues with passenger 

comfort and safety in dense 

flows; simulation-focused 

[8] MPC + Grey Wolf 

Optimizer 

(metaheuristic) 

Reduced computation 

time; improved local 

optima avoidance 

Energy gains 

observed vs. simple 

controllers 

Metaheuristic brittle, parameter-

sensitive, weak guarantees on 

constraint satisfaction and safety 

[9] MPC-based adaptive 

control (space-domain) 

Explicitly trades off 

tracking accuracy and 

energy consumption 

with efficient solvers 

Simulation and 

limited experiments 

show improved 

trade-offs 

Limited experimental coverage; 

communication latency and 

measurement outliers not fully 

addressed 

 

III. RESEARCH OBJECTIVES 

 

 To predict and evaluate the variation in maximum energy consumption of battery parameters and to optimizing energy 

efficiency by using regenerative system. 

 To design energy efficient EV model by using Artificial Intelligence based prediction algorithm to study for the 

vehicle performance and life. 

 Evaluating the effectiveness of the proposed algorithm by drawing comparative analysis of the errors in the output 

with respect to actual data 

IV. PROPOSED METHODOLOGY  
 

a. Prediction models for SOC 

Considering the types of constraints imposed on the system, the goal of optimization-based (OB) EMS is to find the optimal 

control sequence (e.g. reference power demand) that minimizes a cost function while satisfying the dynamic state 

constraints such as the global state constraints (e.g. battery SoC) and the local state constraints (e.g. power limit, speed 

limit, and torque limit). 
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Figure 1: General Flowchart of Bio-inspired Optimization Algorithms 

HEV Parameter Optimization belongs to the domains of multidisciplinary investigation that combine the design of 

powertrain consisting of energy management and control system engineering. In an HEV, the main objectives will be to 

minimize fuel consumption and emissions when optimally sizing the internal combustion engine (ICE), electric motor 

(EM), and energy storage system (ESS) along with fine-tuning of control strategy (CS) parameters. Meanwhile, vehicle-

level performance requirements such as acceleration, grade-ability, drivability, and battery state-of-charge control should 

also be met. Hence, design of HEV can be defined as a multi-objective optimization problem where the objectives, decision 

variables, and performance constraints are mathematically represented as shown with Equation numbers below. 

b. Objectives: Minimize  

F1(X) = {fuel economy} 

F2(X) = {emissions} 

Design Variables: X= {ICE size, EM size, ESS size, control strategy parameters} 

Using state-space modeling for batteries means representing the system dynamics by the battery model, wherein the state 

of charge is considered one of the primary state variables. The estimation of SOC is carried out within the filter or observer 

framework. Basically, it is to obtain the relationship between these quantities that are measured, i.e., current, terminal 

voltage, temperature, and SOC. These variables of measurements enter the state-space model to give predicted terminal 

voltage. The error between the actual measured terminal voltage and the predicted one enters a feedback loop after gain 

adjustment. Thus, corrections are introduced such that the estimated state variables ultimately converge to the real ones, 

giving an accurate SOC value through the observer or filter. 

 

Currently, researchers are focusing on three chief areas of consideration in SOC estimation based on state-space models: 

(i) developing equivalent circuit models that reflect with due accuracy battery electrochemical dynamics, (ii) finding 

parameter identification methods to enable model calibration with utmost precision, and (iii) designing robust 

observers/filters for SOC estimation purposes. Since the accurate identification of parameters that directly relate between 

the equivalent circuit model and SOC prediction is the base assurance for prediction accuracy, the balance between 

modeling accuracy and simplicity of structure remains an impromptu area of research. Advanced characterizations that 

consider thermal effects, changing load conditions, and aging features are now looked into for making SOC estimation 

robust from an application standpoint in a real-world HEV scenario. 

The training process is carried out by defining the initial SOC curve as the output, while current and voltage measurements 

are used as input variables. Optimization techniques are employed to tune the coefficients of the proposed models, with 

the objective of minimizing the absolute error between the measured SOC and the model-predicted response. The ultimate 

goal of this training procedure is to determine a set of coefficients that accurately characterize the behavior of the battery 

pack, effectively approximating the initial capacity curve and enabling reliable SOC estimation across operating conditions. 

Start 

Stop 

Parameter Initialization 

Population Selection and Deployment 

Fitness Function Evaluation 

Extract best fitness value 

Criteria meets 

Optimal Value 
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In this framework, the problem of optimization is set up as a minimization problem of an objective function. This objective 

function represents the discrepancy between the actual SOC data and the model's output. Each objective function can be 

described in terms of a feature set, β, which uniquely defines its structural and behavioral characteristics. In turn, an 

algorithm instance under optimization is defined through its control parameters, p. The principal task is to classify objective 

functions with respect to their feature set, and consequently to predict a set of control parameters thereby maximizing the 

performance of the algorithms. If such a mapping is established, one is able to automatically select or adapt optimization 

strategies that are well-fitted to continuous battery objective functions, thereby enhancing both model accuracy and speed 

of computation. 

The model process allows one to assume battery pack operation by an equivalent circuit made of merely two states: 𝛽1 

represents the internal battery impedance |Zint| [Ω], whereas 𝛽2 corresponds to the SOC. This model has be deployed for 

prediction using the swarm and DE prediction algorithms. Equations (4.13) and (4.14) detail the state-space process model: 

𝛽1(𝑛 + 1) = 𝛽1(𝑛) + 𝑤1(𝑛)               (1) 

𝛽2(𝑛 + 1) = 𝛽2(𝑛) − [𝑣𝐿 + (𝑣0 − 𝑣𝐿). 𝑒𝛾(𝛽2(𝑛)−1) + 𝛼. 𝑣𝐿 . (𝛽2(𝑛) − 1) + (1 − 𝛼). 𝑣𝐿 . (𝑒−𝛽 − 𝑒−𝛽√𝛽2(𝑛 + 1)) −

𝐼(𝑛). 𝛽1(𝑛)]. 𝛽1(𝑛). ∆𝑡. 𝐸𝑐𝑟𝑖𝑡
−1 + 𝑤2(𝑛)        (2) 

Regarding the state-space measurement model (i.e., the system output), this is related to the voltage signal 𝑣𝑚. 

In this context, i(k) refers to the discharging current in amperes [A] and Δt refers to the sampling interval in seconds [s] of 

the model inputs. These parameters V₀, Vᴸ, α, and γ characterize the nonlinear behavior of the battery voltage response 

under open-circuit conditions. The E₍cʀɪᴛ₎ represents total extractable energy capacity of the battery pack, whereas ω₁ and 

ω₂ depict process noise components related with model uncertainties and external disturbances. To analyze implementation 

robustness and prepare for more reliable prediction in adventure mode-shift strategies, the simulation is executed under a 

dynamically varying current profile of EV operation scenarios. These dynamic current profiles mimic realistic driving 

schedules, providing a more precise evaluation of the battery behavior and control strategy performance. 

c. Swarm Algorithm Implementation and process Description 

Particle Swarm Optimization (PSO) is a random search technique with a population-oriented procedure, drawing 

inspiration from different swarms in nature, such as flocking of birds or schooling of fish. The primary guiding principle 

is that an array of candidate solutions called particles, initially dispersed at random positions in the solution space, is 

evaluated with respect to the objective function at each respective position to obtain the particle's fitness. However, PSO 

is generally characterized by requiring fewer parameters to adjust, lesser computational effort to carry out, and better 

convergence properties, which make it attractive to numerous fields. Thus, PSO has been applied to areas such as vehicle 

design, energy management systems, and control strategies for hybrid and electric vehicles. 

In PSO, every particle represents a potential solution and is therefore given a position and velocity in the search space. The 

particles iteratively move in solution space with some velocity that gets constantly updated on the bases of personal and 

global experiences. Each particle remembers its personal best position in the solution space, namely pbest, while the gbest 

is the position of the best solution ever found by any particle among the entire swarm. The particle velocities are constantly 

tuned during every iteration to strike a balance between exploring the search space and exploiting the information 

concerning the best solutions, and thus directing the swarm to better solutions. The algorithm continues to proceed in this 

manner until convergence of the swarm occurs or until it satisfies a terminating condition such as reaching a maximum 

number of iterations or acceptable error. 

Step 1: Initialize the particles 

Initialize the position array with random numbers having uniform distribution 

𝑋 = 𝑈𝑟𝑎𝑛𝑑(𝑟𝑙𝑜𝑤𝑒𝑟𝑙𝑖𝑚,𝑟𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚)                                        (3) 

Assign this initial positon to best known position array. 

𝑃 = 𝑋                                                   (4) 

Initialize particle Velocity 

𝑉 = 𝑋                            (5) 

If the number of particles are Nump then, X is a Nump size array of particle position, similarly P is a Nump size array of 

pbest positions and V is a Nump size array particle velocities. 

Step 2: Evaluate the optimization fitness function 

𝐸𝑥 = 𝐹(𝑋) 𝑎𝑛𝑑 𝐸𝑝 = 𝐹(𝑃) 𝑎𝑛𝑑 𝑒𝑔 = 𝑓(𝑔𝑏𝑒𝑠𝑡)                (6) 

Where 𝐸𝑥 and 𝐸𝑝 are the fitness evaluation array for X and P correspondingly. 𝑒𝑔 is the function evaluation at gbest 

Step 3: Update pbest value for each particle of the population 

𝑖𝑓 𝐸𝑥(𝑖) < 𝐸𝑝(𝑖) 𝑡ℎ𝑒𝑛 𝑃(𝑖) = 𝑋(𝑖)                                                                      (7) 

Step 4: Update gbest value for the entire population – 

𝑖𝑓 𝐸𝑝(𝑖) < 𝑒𝑔 𝑡ℎ𝑒𝑛 𝑔𝑏𝑒𝑠𝑡 = 𝑃(𝑖)                                   (8) 

Step 5: Update the velocity and position of the particles 

𝑉(𝑖) = 𝑤𝑉(𝑖) + 𝑐1𝑢𝑟𝑎𝑛𝑑(0,1)(𝑃(𝑖) − 𝑋(𝑖)) + 𝑐2𝑢𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋(𝑖))                   (9) 

𝑋(𝑖) = 𝑋(𝑖) + 𝑉(𝑖)                                                                                                               (10) 

Where 𝜔 is the inertial weight,  𝑐1 is the cognitive parameter and 𝑐2 is the social parameter. 
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Figure 2: PSO- controller Technique implemented in MATLAB/SIMULINK 

 

The general flow of the PSO-based State of Charge (SOC) estimation approach is illustrated in Figure 2. The algorithm 

uses the measured battery voltage and current as inputs to Particle Swarm Optimization, wherein the PSO adjusts the 

internal model state to minimize the error between the measured terminal voltage and the voltage predicted by the battery 

model for the same current profile. While the full electrochemical battery model contains several dynamic states, from a 

computational standpoint, only the lithium-ion concentration in the electrode, Cs(x, r, t), is considered as the optimization 

variable. 
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If one sees it, Cs is basically a representation of stored charge inside the electrodes and so it is closely associated with SOC 

and almost directly with the open-circuit voltage. By taking Cs as a particle position in the PSO algorithm, the estimation 

problem is converted into an optimization process where each particle stands for a potential SOC value. These particles are 

randomly initialized within a bounded range around the value of Cs previously estimated, and while doing so, the swarm 

iteratively adjusts their position and attempts to minimize the voltage prediction error. While it is usual for PSO to randomly 

choose the initial position of particles, better convergence may be achieved if the initial position is chosen close to the best-

known SOC estimate that mirrors the presently operating condition of the battery.  

The offline estimation of the measurement model parameters defined previously considers a slightly modified version of 

the model detailed in Eq. (11).  

𝑉∗(𝑆𝑂𝐶, 𝐼, 𝜃) = 𝜃1 + (𝜃2 − 𝜃1). 𝑒𝜃5(𝑆𝑂𝐶−1) +  𝜃3. 𝜃1. (𝑆𝑂𝐶 − 1) + (1 − 𝜃3). 𝜃1. (𝑒−𝜃4.√𝑆𝑂𝐶+1) − 𝐼. 𝜃6           (11) 

where the SOC and the current I are data vectors. The parameters vector θ is just the set of parameters to be estimated. It 

is worth mentioning that the SOC data vector can be computed from the voltage and current data vectors measured through 

a real-driving test experiment.  

 

 

V. RESULT AND DISCUSSION 

 

SOC estimation helps provide the needed information on driving profiles, battery behavior, and vehicle efficiency for real-

time energy management of individual electric or hybrid vehicles, and also informs the design of batteries, improvements 

in EV technology, and planning of EV infrastructure. Making an exact prediction of the SOC could lead to improving 

vehicle efficiency, extending battery life, and providing an experience wherein driving remains smooth and comfortable. 

From a fleet operator's perspective, reliable SOC forecasts allow for route optimization, facilitate dynamic dispatching, and 

minimize charging downtime, thereby maximizing productivity and reducing operational costs. The prediction accuracy is 

assessed using certain indicators such as the RMSE, where the lower the value, the better is the alignment between the 

predicted and actual SOC, thereby leading to better energy management and vehicle performance. In this research, the 

Hybrid Gradient Tree Swarm Optimization (HGTSO) algorithm will be used, which is a mixture between the global search 

mechanism of swarm optimization and gradient-driven decision trees to minimize the errors under dynamic driving pattern. 

It uses AI-based pattern recognition and adaptive modeling to enable more robust and real-time SOC prediction, thereby 

fostering intelligent HEV energy management beyond the scope of existing conventional optimization methods. 

  
Figure 3: Vehicle speed reference 

 

Figure 4: Motor running rpm 

 

Acceleration in the HEV occurs during the so-called reference speed profile around 20 seconds, followed by non-uniform 

speed variations until 25 seconds. The deceleration process starts just about 115 s and ends with an idle period of operation. 

These nonlinear speed alterations are captured by the reference speed signal given to the simulation process from 10 s 

onward, as illustrated in Figure 3. Accordingly, this change in speed directly affects motor torque and power performance, 

resulting in varying torque response from the HEV by means of a drivetrain dynamic under each driving condition shown 

in figure 4. 

  
Figure 5: Generator Speed Response under the provided 

running condition in Hybrid Electric Vehicle  

Figure 6: For driving condition the engine speed 

response 
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Figure 5.3 illustrates how the generator used to behave in terms of RPM under the given running conditions, while Figure 

5.4 depicts the influence of vehicle speed on the dynamics coupled between drivetrain and power generation system. Non-

uniform behavior of generator speed occurs because of dynamic loads and transitional behavior. Engine speed changes 

with a change in power demand, staying low under light loads and rising with acceleration or higher speeds for efficient 

HEV operation. 

 

 

 

Figure 7: The variation in battery state of charge % as per 

the driving condition 

 

Figure 8: DC bus voltage in the controller of the 

modelled EV 

 

In Figure 7, it is shown that when motor RPM is zero, the battery SOC % remains constant, indicating no net charge or 

discharge while the SOC varies with changes in vehicle speed and power demand. Left in Figure 8 is the representation of 

DC bus voltage fluctuations during the simulation, setting up for a view of the effect of control algorithms on the EV model 

under particular driving conditions. These figures, aside, should make clear at a glance the effects of motor-based operation, 

battery behavior, and system control on real-time HEV performance. 

 
 

Figure 9: The battery voltage in the EV for the provided 

non uniform driving condition 

 

Figure 10: Comparison of the battery SOC % and 

predicted SOC in the driving condition using prediction 

model 1 

 

Figure 9 shows the battery bus voltage profile for non-uniform driving conditions, with large voltage exhibiting from 

driving irregularities. Figure 10 displays a comparison between actual SOC (blue) and SOC predicted by the Swarm 

Optimization method (red), having an error of 0.9606. These two figures emphasize the effects that driving variability has 

upon battery behavior and SOC estimation. 

 

 

Figure 11: Comparison of the battery SOC % and 

predicted SOC in the driving condition using prediction 

model 2 

 

Figure 12: Comparison of the battery SOC % and 

predicted SOC in the driving condition using two 

different prediction models 

 

 

During varying driving conditions, the actual battery SOC% shown in Figure 11 (Blue) stood alongside the HGTSO-

predicted SOC% (Red). The respective prediction error attained its value at 0.6605. The comparison of the SOC% predicted 

via the swarm-based method (Red, with an error of 0.9606) with the proposed HGTSO one (Yellow, with an error of 
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0.6605) against the actual SOC% (Blue) is given in Figure 12. The HGTSO is reflected as providing higher accuracy closer 

to the actual SOC. These figures highlight the supremacy of HGTSO for reliable SOC estimation in HEVs under dynamic 

driving conditions. 

 

Table 2 Comparative Table of Prediction Errors by two Algorithms 

S No. Prediction Models Prediction Error 

1 Swarm Based 

Prediction 

0.9606 

2 HGTSO 0.6605 

Table 2 infers that the HGTSO model yields an error of prediction of 0.6605. This means that, on average, the prediction 

deviates by approximately 0.6605 units from the actual SOC values. The smaller the error in prediction, the better the 

prediction made, and therefore the model should reflect the observed values more closely. On the other side, the swarm-

based prediction model and the HGTSO model serve as two approaches to SOC estimation with error values that give the 

quantitative base for accuracy as summarized in Table 5.1. 

 

 

VI. CONCLUSION AND FUTURE WORK   

 

In this work, the design and simulation of HEV with MATLAB and accurate battery SOC prediction were carried out to 

boost HEV output and energy management. MATLAB accurately models powertrain components such as internal 

combustion engine, electric motor, and battery, thereby balancing fuel efficiency, emission reduction, and system 

performance under varying conditions. SOC prediction is carried out through advanced algorithmic methods that consider 

battery characteristics, driving profiles, and power demands, created for maximizing battery utilization, driving range 

extension, and battery lifetime. The studies reveal that although Swarm Optimization produces SOC with a mean error of 

0.9606, the proposed Hybrid Gradient Tree Swarm Optimization--HGTSO--diminishes the error to 0.6605, proving better 

in prediction which is the main requirement for real-time energy management. Future research explores how adaptive 

machine learning, deep learning, and reinforcement learning techniques can use the massive scale of EV data, especially 

with context-aware inputs such as temperature, traffic, and driver behavior, to improve SOC prediction further and a more 

intelligent and adaptive energy management scheme for hybrid and electric vehicles. 
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